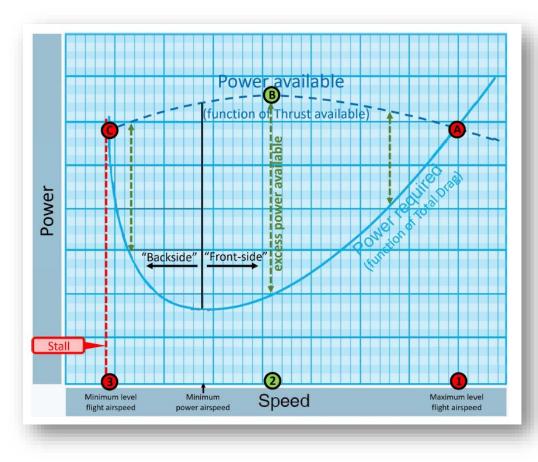
The National FAA Safety Team Presents

Topic of the Month—May 2024 Energy Management—Part 2 (of 2)

Presented to: Safety Minded Aviators, Everywhere...


By: Stephen Bateman, CFI, Chocks Away Aviation, LLC

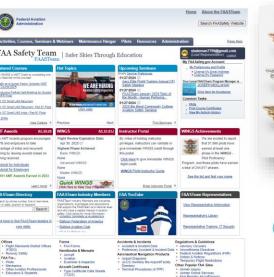
Date: Tuesday 21st May 2024

Produced by: The National FAA Safety Team (FAASTeam)

Federal Aviation Administration

Welcome

- Steve Bateman, CFI; Chocks Away Aviation, LLC
- Instructor, Professional Pilot Program, COCC, Bend, OR
- FAASTeam Lead Rep Portland FSDO; WINGSPro
- Thanks for AOPA You Can Fly
- Your monthly dose of aviation safety
- Earn a full WINGS knowledge credit
- Contact Info:


sbateman7799@gmail.com

• Do not try to communicate using Reply To:

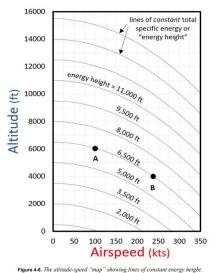
CENTRAL OREGON community college

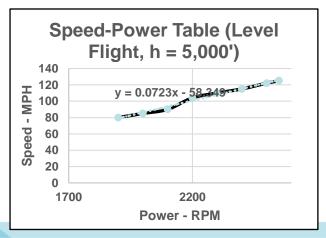
2

Not Recorded, But Even Better...

- PDF of these slides available for further study and use
- Actual slides post on the third Sunday of every month
- https://bit.ly/ToMSafetyArticle
- Select the safety article (month) of interest
- **Open and save the PDF**
- I'LL SHOW THIS INFO AGAIN AT THE END OF THE PRESENTATION

Thanks to the AOPA Flying Clubs Initiative





Energy Management – In Two Parts (April and May TOM)

April Part-1: Some background and theory

• May Part 2: Putting it together in real world situations

Overview

Aircraft Performance Awareness

- GAJSC: Many aircraft incidents are the results of a lack of understanding of energy management:
 Hard landings
 Slow flight/moose turns
 - Hard landings
 - Stall on take-off
 - Stall-spin situations

Aircraft Energy Terminology

- Total energy
- Energy exchange
- Adding energy
- Managing Energy
- **Solving Energy Problems** •
- **Energy Scenarios**

- High DA operations
- "Trying" aerobatics

General Aviation Joint Steering Committee (GA|SC)

Loss of Control Work Group

Approach and Landing

September 1, 2012

his report provides an overview of the work of the General Aviation Joint Steering Committee (GAJSC) since the FAA-Industry program was e-established in January 2011 with specific focus on its pilot project on -of-control on approach and landing

*GAJSC – General Aviation Joint Safety Committee

Part 2: Energy Scenarios and Examples

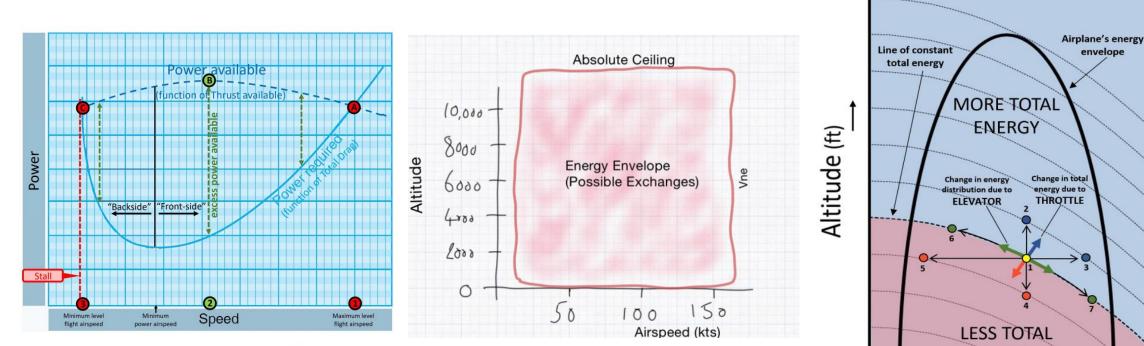


Figure 44. The front side and backside of the power required curve, the power available curve, and the relative excess power available (power available - power required) at different speeds.

Airspeed (kts) ____

ENERGY

Figure 4-8. The energy-control map helping to visualize the basic energy control rules.

Federal Aviation Administration

Energy controls

- Throttle
 - Total energy regulator

- Elevator
 - Energy exchanger

Energy instruments

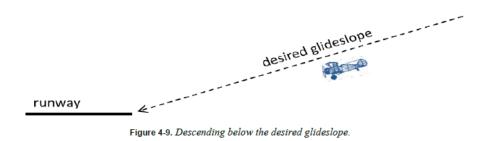
Tach and Manifold Pressure

Airspeed and Altimeter

Federal Aviation Administration

Risks Mitigation From Energy Mismanagement

- Know your aircraft
- Read and understand the PoH...especially Limitations and Performance
- Then calibrate your actual aircraft
- Remember:
- Throttle = Total Energy control/regulator (how much)
- Elevator = Energy Allocation control (exchange)
- Mismanagement occurs when energy demands exceed energy availably in different situations
- May have to add energy or redistribute existing energy


Risks Mitigation From Energy Mismanagement

- Unintended airspeed or altitude deviations
 - Conditions (DA, weight) demanding more energy then "normal" or available
 - Hot, high, humid, heavy climb requirement exceeding capability
 - If total energy is maximum (full power), only recourse is energy exchange
 - PE to KE (trade altitude for airspeed)
 - KE to PE (trade airspeed for altitude)

Risk and Actions

- We must be able to identify, assess and mitigate two risks associated with energy mismanagement;
- 1. Unwanted deviations from the desired energy state
 - a. Unintended speed-altitude deviations
 - b. Example scenario:
 - > Unintentionally descending below the glide slope on approach to landing and failing to make the proper corrections. Pitch up, throttle up...or both?

- 2. Unintentional, deceleration and/or sink rate causing rapid depreciation of mechanical energy
 - a. Unforeseen, continuous energy loss coupled with little or no excess power
 - b. Example scenario:
 - > Taking off in high DA conditions towards rising terrain, with nowhere to turn. What can be done?

Managing Energy Errors

1. Unwanted deviations from the desired energy state

- a. Unintended speed-altitude deviations
- b. Example:
 - > Unintentionally descending below the glide slope on approach to landing and failing to make the proper corrections. Pitch up, throttle up...or both?
 - Goal is to get back to target energy state

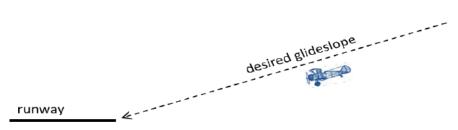


Figure 4-9. Descending below the desired glideslope.

Federal Aviation Administration

Energy Error Situations

• Two types of energy errors:

- Total energy errors
- Energy distribution errors
- Instruments:
 - ASI
 - Altimeter

• Senses

- Pitch attitude
- Wind noise
- Control feel

Federal Aviation Administration

Energy Error Situations

Total energy issues:

- Blue boxes = too much total energy
- Red boxes = too little total energy
- Speed and altitude deviate in the same direction
 - High and fast (box 7)
 - Low and slow (box 3)

• Energy distributions issues:

- Green boxes = total energy okay, but speed and altitude deviate in different directions
 - High and slow (box 1)
 - Low and fast (box 9)

Airspeed						
	Slower	Desired Airspeed	Faster			
Higher	(1) Total Energy: OK Potential energy: high Kinetic Energy: low	(4) Total Energy: high Potential energy: high Kinetic Energy: OK	(7) Total Energy: very high Potential energy: high Kinetic Energy: high			
Desired Altitude	(2) Total Energy: low Potential energy: OK Kinetic Energy: low	(5) Desired Energy State Total Energy: OK Potential energy: OK Kinetic Energy: OK	(8) Total Energy: high Potential energy: OK Kinetic Energy: high			
Lower	(3) Total Energy: very low Potential energy: low Kinetic Energy: low	(6) Total Energy: low Potential energy: low Kinetic Energy: OK	(9) Total Energy: OK Potential energy: low Kinetic Energy: high			

Figure 4-11. An energy state matrix that translates the main altitude-speed deviations into energy errors relative to the desired energy state (5).

Correcting Energy Error Situations

			Airspeed		
		Cautions when Very Slow	Slower	Desired speed	Faster
Altitude	Higher	Relatively safe. Surplus altitude is available to gain speed by pushing the elevator forward.	(1) Exchange energy by pushing the elevator forward to accelerate and descent simultaneously. Maintain the throttle setting.	(4) Reduce throttle setting to reduce total energy. Use elevator to maintain correct airspeed and allow the airplane to descend.	(7) Reduce throttle setting significantly to decrease total energy. Pull back on elevator gradually to decelerate to correct airspeed and then descend.
	Desired altitude	Risky. Consider gaining speed at the expense of some altitude initially to improve climb performance with full throttle.	(2) Increase throttle setting to gain total energy by accelerating. Use elevator to maintain the desired altitude.	(5) DESIRED ENERGY STATE Maintain both throttle and elevator (trim) settings.	(8) Reduce throttle setting to decelerate. Use elevator to maintain the desired altitude.
	Lower	Dangerous! Apply full throttle to resolve this condition. Avoid pitching up, which would increase drag and reduce or impede climb performance when on the backside of the power required curve.*	(3) Increase throttle setting significantly to gain total energy. Push elevator forward gradually to accelerate to correct airspeed and then climb.	(6) Increase throttle setting to gain altitude and pull back on elevator to maintain correct airspeed.	(9) Exchange energy by pulling the elevator back to climb and decelerate simultaneously. Maintain the throttle setting.

* Depending on aircraft type, as full throttle is applied at the start of correction maneuver, slight forward or aft elevator pressure may be needed to maintain a constant pitch attitude. As the airplane gains total energy, use the elevator to accelerate to correct airspeed and then climb.

Figure 4-12. The control skills needed to correct total energy and energy distribution errors identified in Figure 4-11 with an additional column giving caution to the "very slow" condition where careful AOA management is needed in addition to energy management.

Scenario 1:

- Below the glide slope::
 - Unintentionally descending below the glide slope on approach to landing and failing to make the proper corrections. Pitch up, throttle up...or both?
 - Three below glide slope situations shown here B, C, D
 - Low, but now check airspeed against target:
 - B Low and slow
 - Increase throttle to regain total energy (climb)
 - Assumes sufficient excess power to climb...may not be the case if very slow and behind the power curve
 - Further pitch will increase drag and reduce speed even more
 - May have to *push* forward stick (reduce AOA and induced drag) and use the extra energy to speed up, before attempting the climb.
 - !!DANGER!! Watch out for obstacles and hard deck!
 - D Low and fast.
 - Up elevator to regain speed and altitude
 - If not too far below, level off and regain the glide slope

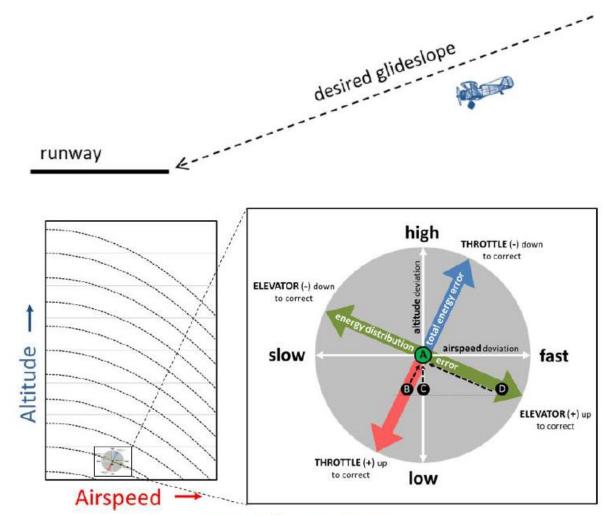


Figure 4-13. Energy error management.

Scenario 1:

- Below the glide slope::
 - Low, but now check airspeed against target:
 - C Low and on speed
 - Combo of total energy and distribution errors
 - Must increase throttle to climb, and pull back on yoke to maintain target airspeed
 - Reduce throttle and push forward when back on glide slope.
 - Generally, throttle and elevator, simultaneously
 - Trim and throttle tweaks to maintain required glide slope gradient, whilst on target speed (will require monitoring ground speed)
 - FPM required to maintain gradient = FRNM * GS/60
 - Example: Maintaining a 3-degree glide slope requires 318 feet per NM gradient.
 - At GS = 60 kts, rate of descent= 318 FPM
 - At GS = 90 kts, rate of descent= 477 FPM
 - Now have a third instrument to help stay stabilized the VSI
 - Use the table at the back of the Terminal Procedures
 Publication or make your own

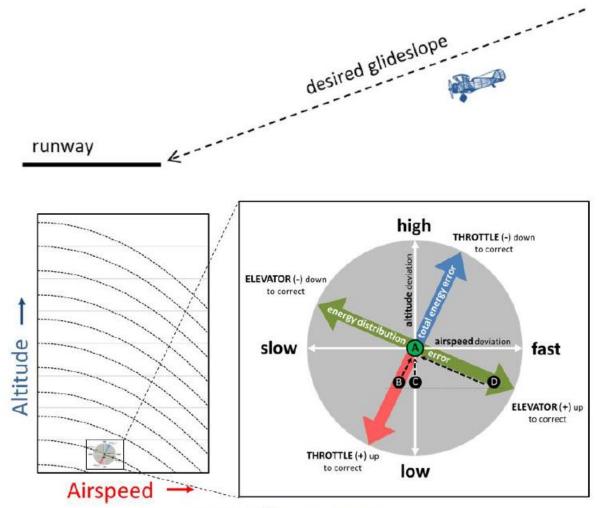


Figure 4-13. Energy error management.

Federal Aviation Administration

Back Page of TPP

INSTRUMENT TAKEOFF OR APPROACH PROCEDURE CHARTS RATE OF CLIMB/DESCENT TABLE (ft per min)

A rate of climb/descent table is provided for use in planning and executing climbs or descents under known or approximate ground speed conditions. It will be especially useful for approaches when the localizer only is used for course guidance. A best speed, power, altitude combination can be programmed which will result in a stable glide rate and altitude favorable for executing a landing if minimums exists upon breakout. Care should always be exercised so that minimum descent altitude and missed approach point are not exceeded.

ft/NM	%				G	ROUND	SPEED) (knots))				ANGLE
IVINIM	70	60	90	120	150	180	210	240	270	300	330	360	ANGLE
152	2.50	150	230	300	380	460	530	610	680	760	840	910	1.43
200	3.29	200	300	400	500	600	700	800	900	1000	1100	1200	1.89
210	3.46	210	320	420	530	630	740	840	950	1050	1160	1260	1.98
220	3.62	220	330	440	550	660	770	880	990	1100	1210	1320	2.07
230	3.79	230	350	460	580	690	810	920	1040	1150	1270	1380	2.17
240	3.95	240	360	480	600	720	840	960	1080	1200	1320	1440	2.26
250	4.11	250	380	500	630	750	880	1000	1130	1250	1380	1500	2.36
260	4.28	260	390	520	650	780	910	1040	1170	1300	1430	1560	2.45
270	4.44	270	410	540	680	810	950	1080	1220	1350	1490	1620	2.54
280	4.61	280	420	560	700	840	980	1120	1260	1400	1540	1680	2.64
290	4.77	290	440	580	730	870	1020	1160	1310	1450	1600	1740	2.73
300	4.94	300	450	600	750	900	1050	1200	1350	1500	1650	1800	2.83
310	5.10	310	470	620	780	930	1090	1240	1400	1550	1710	1860	2.92
320	5.27	320	480	640	800	960	1120	1280	1440	1600	1760	1920	3.01
330	5.43	330	500	660	830	990	1160	1320	1490	1650	1820	1980	3.11
340	5.60	340	510	680	850	1020	1190	1360	1530	1700	1870	2040	3.20
350	5.76	350	530	700	880	1050	1230	1400	1580	1750	1930	2100	3.30
360	5.92	360	540	720	900	1080	1260	1440	1620	1800	1980	2160	3.39
370	6.09	370	560	740	930	1110	1300	1480	1670	1850	2040	2220	3.48
380	6.25	380	570	760	950	1140	1330	1520	1710	1900	2090	2280	3.58
390	6.42	390	590	780	980	1170	1370	1560	1760	1950	2150	2340	3.67
400	6.58	400	600	800	1000	1200	1400	1600	1800	2000	2200	2400	3.77
450	7.41	450	680	900	1130	1350	1580	1800	2030	2250	2480	2700	4.24
500	8.23	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	4.70
550	9.05	550	830	1100	1380	1650	1930	2200	2480	2750	3030	3300	5.17

21224

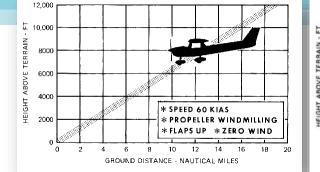
21224

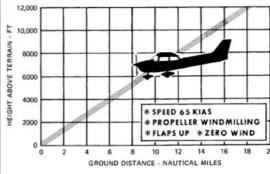
Federal Aviation Administration

Scenario 2:

• Take off on high DA day, surrounded by increasing terrain:

- Aircraft takes longer distance to reach rotate speed
- Climb is lackluster (due to lower available power at high DA)
- Temptation is to pitch up to "help the climb"...speed drops...climb rate decrease even more
- Stall horn blares...
- MUST now reduce AOA below critical...watch out for those mountains...
- Better techniques:
 - Wait for cooler temperatures
 - Shed some weight
 - If space permits, lower initial pitch and climb rate to maintain a safe flying speed
 - Orbit the departure airport to gain altitude before proceeding on course
- For a more complete treatment using energy diagrams, see the <u>Airplane Flying Handbook</u>, Pages 4-– 4-17

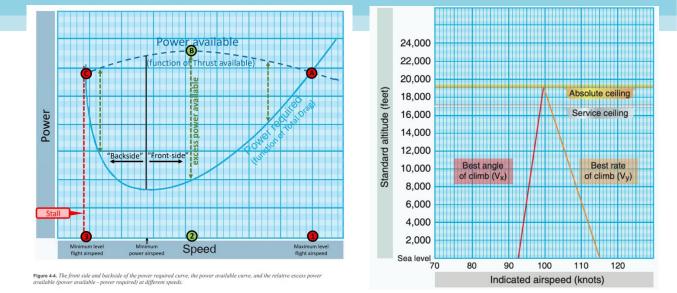

Energy Facts to Know


Best glide speed descent details

- Glide distance from different AGL?
- Descent angle?
- Feet per NM descent?
- Feet per minute at best glide?
- Altitude lost in a standard rate turn descent?
- A152:
 - Slope = 19NM in 12,000'
 - Glide slope (ratio) = 19*6072/12000 = 9.7:1
 - Descent angle = $Tan^{-1}(1/9.7) = 5.9^{\circ}$
 - Feet per NM descent = 12000/19 = 631 ft/NM
 - FPM at 60 Kts = 631 FPM
 - Altitude lost in a standard rate turn = 1,262 ft
 - Go out and test this!

– C172:

- Slope = 18NM in 12,000'
- Glide slope (ratio) = 18*6072/12000 = 9.1:1
- Descent angle = $Tan^{-1}(1/9.7) = 5.9^{\circ}$
- Feet per NM descent = 12000/18 = 667 ft/NM
- FPM at 60 Kts = 667 FPM
- Altitude lost in a standard rate turn = 1,334 ft
 - Go out and test this!


A152 Glide Performance					
Glide Ratio:	9.7				
AGL (feet)	NM Glide				
2000	3.2				
4000	6.4				
5000	8.0				
6000	9.6				
8000	12.8				
10000	16.0				

C172 Glide Performance					
Glide Ratio:	9.1				
AGL (feet)	NM Glide				
2000	3.0				
4000	6.0				
5000	7.5				
6000	9.0				
8000	12.0				
10000	15.0				



Energy Facts to Know

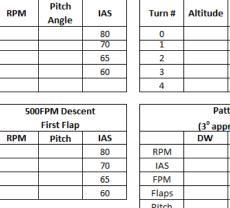
- Best rate of climb speed V_Y
 - Speed at max excess power
- Best angle of climb speed V_X
 - Speed at max excess thrust
- V_{Y} and V_{X} vary with altitude
 - V_A
 Wing lift capability vs structural limits
 - Varies with actual weight
 - $-V_{Aw} = V_{Am} * SQRT(Actual W/Max Weight)$
 - $V_{Aw} = V_A$ at actual weight
 - $V_{Am} = V_A$ at max weight
 - Plot your aircraft V_{Aw} curve:

V_A Verses Weight A152

Calibrate Your Aircraft and Energy Contours

- This is a two-person job
- ALWAYS:
 - Person flying (essentially like instrument flying)
 - Person looking (traffic and writing)
- Produce the energy contours for your plane
- Why...? Because it is a fun flying exercise!
- Will need precise flying technique
- Helps you understand you aircraft in different configurations
- Earn WINGS credit if flying with a CFI

Calibrate Your Aircraft


- This is a two-person job
- **ALWAYS:**
 - Person flying (essentially like instrument flying)
 - Person looking (traffic and writing)
- Calibrate your plane
- Why...? Because it is a fun flying exercise!
- Will need precise flying technique
- Helps you understand your aircraft in different configurations
- Earn WINGS credit if flying with a CFI

Aircraft type: Tail #: N Pilot: Date:

Pitch, Power, Performance Tables

Descent

I	evel Fligh No Flaps	t	500	OFPM Desc No Flaps	e
RPM	Pitch Angle	IAS	RPM	Pitch Angle	
2500					
2400					ļ
2300					ļ
2200					ļ
2100					
2000					
1900			500	OFPM Desc	E
1800				First Flap	т
1700			RPM	Pitch	ļ
1600					ļ
1500					ļ
					ļ
Slo	w Flight. Le Full Flaps	evel	500	OFPM Desc Full Flaps	E
RPM	Pitch Angle	IAS	RPM	Pitch Angle	
		70			I
		65			ļ
		60			
		55			ļ
		50			
		45			

	Power Idle t Glide =	e Kts
Flans	Pitch	Descent
Flaps	Angle	FPM
0		
1		
2		
3		

Desc	ent]		Pat	tern Numb	er
t Flap				(3° app	roach, zero	o w
tch	IAS]		DW	Abeam	
	80		RPM			
	70		IAS			
	65]	FPM			
	60]	Flaps			
			Pitch			
Desc	ent					

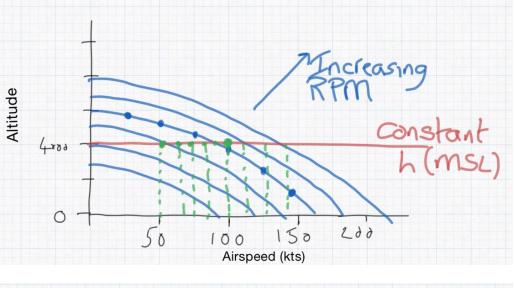
Altiude Loss Per Turn

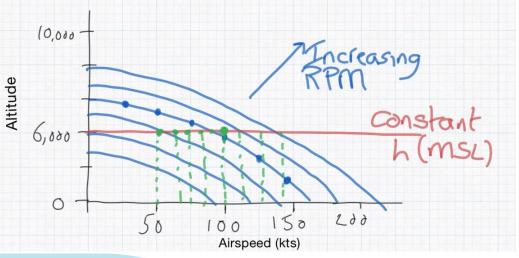
Standard Rate

Best Glide

	Pattern Numbers						
	(3° ap	proach, zero	wind)				
	DW	Abeam	Base	Final			
RPM							
IAS							
FPM							
Flaps							
Pitch							

Alt Lost

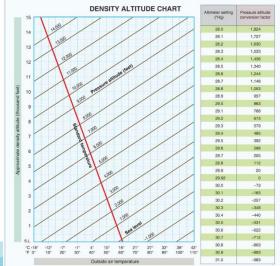

	1	Altiude L	ost in "Imp	ossible"
IAS			Turn	
		E	Best Glide	-
80		Turn to:	Altitude	Alt Lost
70		90 ⁰		
65		180 ⁰		
60		270 ⁰		
55		180 ⁰		

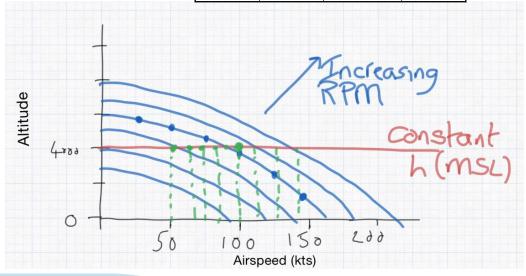


Calibrate Your Energy Contours-1

- Determine impact of power on speed, in level flight
- In level flight at h MSL
- Record IAS at different RPM
- Can repeat at different h...

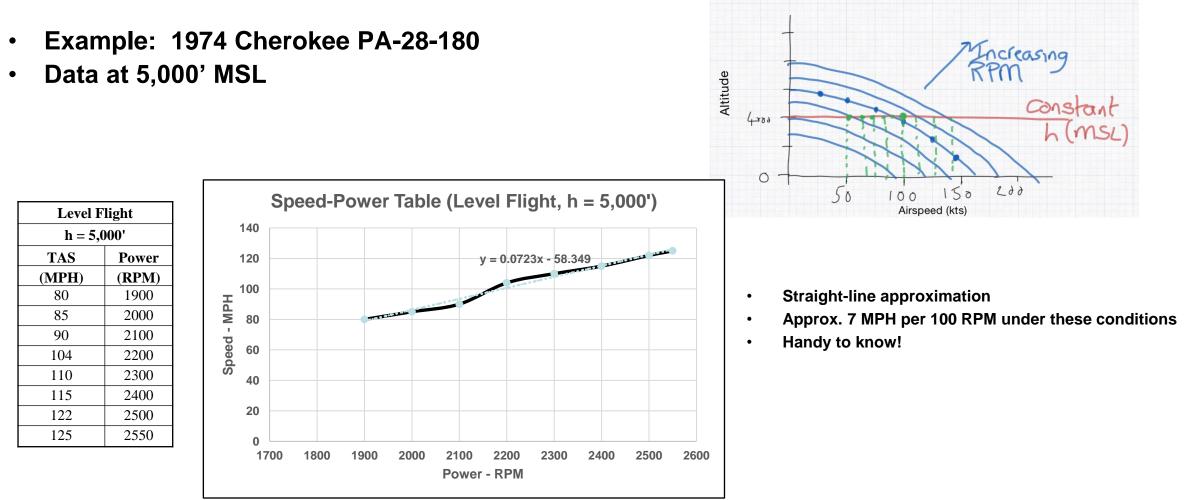
Level Flight at MSL = (No Flaps)					
RPM	IAS	Pitch Angle			
2500					
2400					
2300					
2200					
2100					
2000					
1900					
1800					
1700					
1600					
1500					



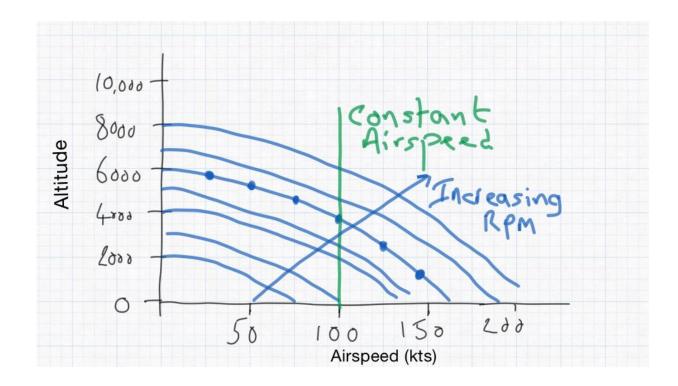


Calibrate Your Energy Contours-1a

- Strictly, KE is due to TAS not IAS, so should take into account DA
- PE is mgh, where h is MSL
- Don't sweat it convert IAS to TAS for the graph...
- How to determine DA...?
- At each h, record PA (at 29.92") and T
- Use the DA graph, look-up table, equation, etc., to determine TAS


	Level Flight at MSL = (No Flaps)							
RPM	IAS	DA	TAS					
2500								
2400								
2300								
2200								
2100								
2000								
1900								
1800								
1700								
1600								
1500								

Federal Aviation Administration


Calibrate Your Energy Contours-1b

Calibrate Your Energy Contours-2

- Determine impact of power on ROC, in level flight
- At constant airspeed
- Record ROC at different RPM
- Can repeat at different airspeeds...

Calibrate Your Energy Contours-3

Calibrate cruise and climb performance, full power at different Density Altitudes

Condition	5:			
	Full-Throttle			
	Mixture - Peak EGT			
	Note Altimeter setting	30.13		
Operation	S:			
	At indicated altitude - MSL Mixture - Peak EGT Set Alt to 29.92" Note PA Note OS air temperature Estimate Density Altitude from grap Note S&L cruise speed Note climb rate FPM at Vy Note pitch angle	Weight: ph if have time	2055	
Analysis:	Calculate Pressure Altitude from: PA = MSL + (29.92-SLP)*1000 Compare measured with calculated PA. Calculate standard temp at that MSL from: TSTD = 15 – (MSL*2)/1000 See that actual temp is hotter than standard - resulting in the high density altitude Calculate Density Altitude from: DA = PA + (TMSL – TSTD)*120 (or same thing: DA = MSL*1.24 + (29.92-SPL)*1000 + (TMSL -15)*120) Calculate TAS from estimate equation: TAS ~ IAS + 1 % per 600 ft +/- 1 % per 5°C diff with ISA Calculate TAS using rule of thumb: TAS ~ IAS + 2% of IAS per 1000' of PA Compare the two TAS estimates Note best rate of climb (FPM) and speed at which it was obtained (Vy). Note that Vy theoretically reduces at ~ 1% per 1000' Note hours flown = 1.3 and fuel used = 10 galls - so GPH = 7.7			

Federal Aviation Administration

Calibrate Your Energy Contours-3a

Calibrate cruise and climb performance, full power at different Density Altitudes

MSL Altitude	Mixture Leaned	Set 29.92	PA Measured	OS Temp C	Std Temp C	Calc DA	Cruise IAS MPH	Calc TAS MPH	TAS Est (+2% per1000)	RPM (Max)	FPM at Vy	At . of	Pitch Angle (Degrees)
0				29	15	1462							
1468				26	12	2930				2700	900	85	10
3000			2950	18	9	3870	135	143	143	2700	800	85	9
4000			3850	14	7	4630	135	145	145	2700	700	85	8
5000			4775	12	5	5630	128	140	140	2650	700	85	7
6000			5700	11	3	6750	127	141	142	2600	650	85	7
7000			6800	10	1	7870	125	141	142	2550	500	85	6
8000			7800	7	-1	8750	120	138	139	2525	500	80	7
9000			8800	5	-3	9750	120	140	141	2525	400	75	5
10000			9850	5	-5	10990	115	136	138	2525	350	75	4
11000			10825	4	-7	12110	110	132	134	2525	300	75	4
<u>11500</u>				3	-8	12610	100	121	123	2400	250	75	4
<u>12000</u>				2	-9	13110	95	116	117	2400	200	75	4

Other Energy Scenarios to Ponder:

On the approach

- On speed
- Below glidepath
- On the approach ۲
 - Too fast
 - Below the glideslope
- On the approach ۲
 - Too slow
 - Above the glideslope

On the approach ۲

- Too slow
- Below the glideslope

The impossible turn ٠

- Little to do with skill
- All about energy deficit
- Level off from a climb/descent

- Go around
- Low pass
- Landing •
 - Out of ground effect
 - In of ground effect

Slow flight

- Level
- Climbing
- Descending
- Short take off/landing
- Soft take off/landing •
- Getting away quickly from a threat ٠
- Canyon turn (1g descending steep turn)
- Level turn at 60° bank
 - Hint: 1g becomes 2g in energy equations

Performance Data:

- Rebuild, by using data collected in-• flight, all graphs and tables in the **Performance Section of your PoH**
 - Determine what your plane actually does

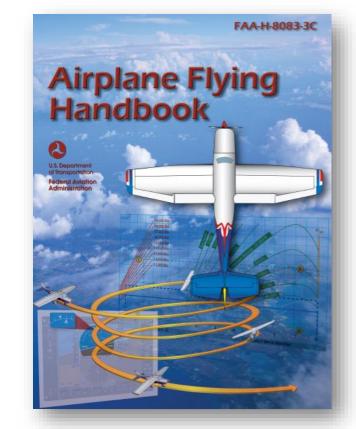
Experimental? Create graphs and tables for your aircraft

- Determine what your plane actually does

SECTION 5 PERFORMANCE

TABLE OF CONTENTS

Introduction
Use of Performance Charts
Sample Problem
Takeoff
Cruise
Fuel Required
Landing
Demonstrated Operating Temperature
Figure 5-1, Airspeed Calibration - Normal Static Source 5-8
Airspeed Calibration - Alternate Static Source 5-9
Figure 5-2, Temperature Conversion Chart
Figure 5-3, Stall Speeds
Figure 5-4, Takeoff Distance - 2300 Lbs
Takeoff Distance - 2100 Lbs and 1900 Lbs
Figure 5-5, Rate Of Climb - Maximum
Figure 5-6, Time, Fuel, And Distance To Climb 5-15
Figure 5-7, Cruise Performance
Figure 5-8, Range Profile - 40 Gallons Fuel
Range Profile - 50 Gallons Fuel 5-18
Figure 5-9, Endurance Profile - 40 Gallons Fuel
Endurance Profile - 50 Gallons Fuel


Page

5 - 21

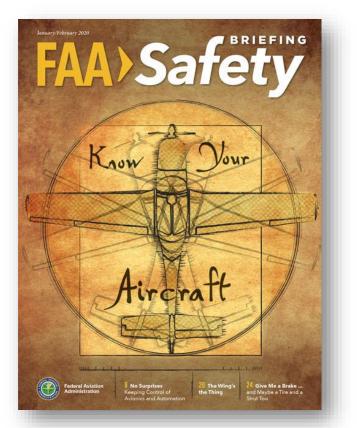


Figure 5-10, Landing Distance

For more information

https://tinyurl.com/mr2jux65

https://tinyurl.com/2s42pxmm

Federal Aviation Administration

References

- AOPA Energy Management
 - <u>https://www.aopa.org/news-and-media/all-news/2015/august/flight-training-magazine/energy-management</u>
- FAA Airplane Flying Handbook Chapter Four

Why WINGS?

- 5. WINGS Training yields rewards!
- 4. WINGS Proficiency training works!
- 3. WINGS coaching gets results!
- 2. WINGS broadens your horizons!
- 1. WINGS pilots are:
 - Competent!
 - Confident!
 - Safe!

Next Month's TOM:

The National FAA Safety Team Presents

Topic of the Month – June 2024 After Market Equipment

Presented to:	Safety Minded Aviators, Everywhere
By:	Stephen Bateman, CFI, Chocks Away Aviation, LLC
Date:	Tuesday 18 th June 2024

Produced by AFS-850 The FAA Safety Team (FAASTeam)

Federal Aviation Administration

Homework-1: GA Proficiency

•https://youtu.be/308_f57828U

Federal Aviation Administration

Homework- 2: Resources - General

- Spend some quality time with these resources:
- Perfecting Your Preflight Inspection
- <u>A Closer Look at Personal SMS</u>
- <u>https://www.aopa.org/training-and-safety/air-safety-institute</u>
- <u>Safety to Go</u>
- <u>faasafety.gov</u>
- <u>Pilot Minute</u>
- 57 Seconds To Safer Flying
- FAA Safety Briefing Magazine
- From the Flight Deck
- <u>https://www.youtube.com/playlist?list=PL5vHkqHi51DSNpsBC8nb8Q8gFcGVmWhGA</u>
- <u>https://www.youtube.com/watch?v=303Pd_2UAmU</u>
- Subscribe to Aviation Safety

https://www.aviationsafetymagazine.com

Homework-3: Post-Flight SLAP

After every flight, *SLAP* yourself and create actions for the next flight. Self evaluation:

- S: How were my Skills today?
- L: What did I Learn today?
- A: How was my ADM today?
- **P:** How was my *P*lanning today?

Thank you for attending!

You are vital members of our GA safety community!

Not Recorded, But Even Better...

- PDF of these slides available for further study and use
- Actual slides post on the third Sunday of every month
- https://bit.ly/ToMSafetyArticle
- Select the safety article (month) of interest
- Open and save the PDF

Thanks to the AOPA Flying Clubs Initiative

