The National FAA Safety Team Presents

Federal Aviation Administration

Topic of the Month – December 2023 Making the Numbers

Presented to: Safety Minded Aviators, Everywhere...

By: Stephen Bateman, CFI, AOPA Flying Clubs

Date: Tuesday 19th December 2023

Produced by: The National FAA Safety Team (FAASTeam)

2

Welcome

- Steve Bateman, CFI; AOPA Flying Clubs; Aviation Instructor Professional Pilot Program, COCC; FAASTeam Lead Rep Portland FSDO; WINGSPro
- Your monthly 33-minute dose of aviation safety
- WINGS Credit: Yes...!
- No time for questions, but please send me email: <u>steve.bateman@aopa.org</u>
 Tab 204 cos 0250
 - Tel: 301 695 2356
- Webinar email (<u>ycfg2w2@aopa.org</u>) is unmonitored—you will not get a reply!!!!

So...

- No recording...but even
 better...
 - <u>https://youcanfly.aopa.org/flying-</u> <u>clubs/flying-club-newsletter</u>
- You can download the presentation!
 - This and earlier ToM presentations are available...
 - Sign-up now!
 - December edition 12/17/2023

★ Flying Clubs → Club Connector Newsletter

FLYING CLUB CONNECTOR NEWSLETTER

Your source for the latest news on flying clubs all over the country. AOPA's research has shown us that flying club leaders are hungry to learn more about the practical experiences of other clubs. So, we have created this

youcanfly.aopa.org/flying-clubs/flying-club-newsletter

✤ > Flying Clubs > Club Connector Newsletter

FLYING CLUB CONNECTOR NEWSLETTER

Your source for the latest news on flying clubs all over the country. AOPA's research has shown us that flying club leaders are hungry to learn more about the practical experiences of other clubs. So, we have created this monthly e-newsletter.

SUBSCRIBE

ARTICLES BY TOPIC

NARROW RESULTS 🗸

SAFETY

	NARROW RESULTS 🗸	
DATE 🔶		LIST 📕 GRID

CLUB CONNECTOR | DECEMBER 17, 2023

Safety: Topic of the Month: Making the Numbers

This month's safety section looks at the 4-H Club of Aviation. This doesn't involve livestock but rather hot, high, humid, and heavy conditions that conspire to radically change the performance of our aircraft. We'll also look at ways to predict performance (degradations) by using manufacturer's data, useful rules-of-thumb, and the practical calibration of your aircraft.

CLUB CONNECTOR | NOVEMBER 19, 2023

Safety: Eroding Standards and Shifting Norms

In this month's safety section, we'll take a look at Normalization of Deviance, which happens when established standards and limits gradually decay over time, becoming new norms—with predictable results. Could this be a reason why accidents during non-commercial GA operations (some 80%) have stayed pretty constant over a decade, with around 70% of those accidents being caused by some form of pilot (human) error? Well, let's dig and see...

GO TO ARTICLE >

CLUB CONNECTOR | OCTOBER 15, 2023

Safety: Gaming the Aviation Medicine System

Overview : Aircraft Performance

• Why

- Accidents are attributed to performance expectations vs. reality
- What
 - Determine how your aeroplane (and you) will perform in different conditions

• How

- Book work and brain work for the numbers
- Stick work for the understanding
- Calibrate you and your aircraft

Accidents occurring hot, high, humid and heavy situations led The General Aviation Joint Safety Committee (GAJSC) to study this in more detail and concluded that many of these accidents were caused by inaccurate and/or unreasonable expectations about aircraft performance.

Classic example of human biases...it worked last time...

https://en.wikipedia.org/wiki/List_of_cognitive_biases

Accidents Involving Performance

Figure 1.11: Major types of accidents

2021 Non-commercial fixed-wing

THE RICHARD G. MCSPADDEN REPORT 33RD AOPA AIR SAFETY INSTITUTE ACCIDENT REPORT

Types of Take Off Accidents

Figure 1.3.2: Types of takeoff and climb accidents

2021 Non-commercial fixed-wing

Types Descent and Approach Accidents

Figure 1.6.2: Types of descent and approach accidents

2021 Non-commercial fixed-wing

What: The (Aviation) 4-H Club

• Hot

- Field temperature (take off and landing performance)
- Temp at altitude (cruise performance)
- High
 - Altitude = lower air density
 - Low pressure day = lower air density

• Humid

- Relative humidity
- T & DP
- Hot air can hold more water vapor = lower air density
- Heavy
 - More W requires more L to get up and stay airborne
 - Where does "more L" come from?
 - Lift comes from V² and/or C_L (airspeed and/or AoA)

It's a regulation: (91.103) know all there is to know...

- W Weather
- K Known issues: NOTAMs, TFRs
- R Runways of intended use
- A Alternatives
- F Fuel management
- T Take-off and landing performance

It's a regulation: (91.103) know all there is to know...

- W Weather (including density altitude)
- K Known issues: NOTAMs, TFRs
- R Runways of intended use
- A Alternatives
- F Fuel management
- T Take-off and landing performance

How often have you heard....

- She'll haul anything you can fit in the door
- Relax...I flew it in here, I'll fly it out (umm, but when...)
- We've got plenty of fuel...(umm...perhaps too much?)
 - Multi-dimensional trade-off. More fuel, but more weight...

Pilots need to understand and act on...

- Takeoff and climb performance
- Cruise performance
- Approach and landing performance
- Emergency performance
 - Aircraft weight
 - Wind
 - Runway composition, condition, length, slope
 - Obstacles

Pilots need to understand and act on...

Weight and balance calculations

- Take off weight and CG location
 - Don't guess—weigh it!
 - Location, location, location
 - Objects may shift in flight...
 - Document your work (e.g., EFB)

• Experience it...

- At some stage, you will try to push it...
- Fly the airplane, at or near max gross weight
- Pick a long runway...
- With a CFI (pick a CFI who has actually done it...)

Pilots need to know – performance calculations

• DA and weight impacts:

- Take off distance
- Landing distance
- Climb performance & obstacle clearance
- Cruise performance
- Runway length, composition, condition and slope
 - Impact on take off distance
 - Influence on landing distance
- Aircraft configuration
 - Normal, short field, soft field
 - Flap settings

TAKE-OFF DISTANCE VS. DENSITY ALTITUDE BROSH 2450 LBS. MAXMUM EFRORT 25° FLAPS PAYED LEVEL DRY RUMWAY

PIPER CHEROKEE

Take off calculations

- It's all about DA and weight
- Need to know PA, temp & weight for this Cessna table
- Read the conditions and notes!
- You, yeah you...Chuck, the test pilot

CONDITIONS:

Flaps 10° Full Throttle Prior to Brake Release Paved, level, dry runway Zero Wind Lift Off: 51 KIAS Speed at 50 Ft: 56 KIAS

- But wait, there's more...

NOTES:

- 1. Short field technique as specified in Section 4.
- Prior to takeoff from fields above 3000 feet elevation, the mixture should be leaned to give maximum RPM in a full throttle, static runup.
- Decrease distances 10% for each 9 knots headwind. For operation with tail winds up to 10 knots, increase distances by 10% for each 2 knots.
- For operation on dry, grass runway, increase distances by 15% of the "ground roll" figure.

SHORT FIELD TAKEOFF DISTANCE AT 2550 POUNDS

CONDITIONS:

Flaps 10° Full Throttle Prior to Brake Release Paved, level, dry runway Zero Wind Lift Off: 51 KIAS Speed at 50 Ft: 56 KIAS

	(0°C	10	0°C	20	0°C	30	0°C	40	0°C
Press Alt In Feet	Grnd Roll Ft	Total Ft To Clear 50 Ft Obst								
S. L.	860	1465	925	1575	995	1690	1070	1810	1150	1945
1000	940	1600	1010	1720	1090	1850	1170	1990	1260	2135
2000	1025	1755	1110	1890	1195	2035	1285	2190	1380	2355
3000	1125	1925	1215	2080	1310	2240	1410	2420	1515	2605
4000	1235	2120	1335	2295	1440	2480	1550	2685	1660	2880
5000	1355	2345	1465	2545	1585	2755	1705	2975	1825	3205
6000	1495	2605	1615	2830	1745	3075	1875	3320	2010	3585
7000	1645	2910	1785	3170	1920	3440	2065	3730	2215	4045
8000	1820	3265	1970	3575	2120	3880	2280	4225	2450	4615

NOTES:

- 1. Short field technique as specified in Section 4.
- Prior to takeoff from fields above 3000 feet elevation, the mixture should be leaned to give maximum RPM in a full throttle, static runup.
- Decrease distances 10% for each 9 knots headwind. For operation with tail winds up to 10 knots, increase distances by 10% for each 2 knots.
- For operation on dry, grass runway, increase distances by 15% of the "ground roll" figure.

Same aircraft...different conditions

SECTION 5 PERFORMANCE	CES	SSNA 172S	SECTION 5 PERFORMANCE	CESSNA MODEL 172S
SHORT FIELD AT 25	TAKEOFF DISTANCE 50 POUNDS		SHORT FIEL AT	D TAKEOFF DISTANCE
CONDITIONS: Flaps 10° Full Throttle Prior to Brake Release Paved, level, dry runway Zero Wind Lift Off: 51 KIAS Speed at 50 Ft: 56 KIAS		Impact of weight	CONDITIONS: Flaps 10° Full Throttle Prior to Brake Rele Paved, level, dry runway Zero Wind Lift Off: 44 KIAS Speed at 50 Ft: 50 KIAS	}ase
0°C 10°C	20°C 30°C 40°	°C	0°C 10)°C 20°C 30°C 40°C
Press Alt In Ft Clear S0 Ft S0	I Grnd Total Grnd Total Grnd T Roll Ft To Roll Ft To Roll F r Ft Clear Ft Clear Ft Clear Ft Clear 50 Ft 50 Ft 5	Fotal Et To Llear 50 Ft Dest	Press Alt In Feet Grnd Total Grnd Roll Ft To Clear Ft Obst	TotalGrndTotalGrndTotalFt ToRollFt ToRollFt ToRollFt ToClearFtClearFtClearFtClear50 Ft50 Ft50 FtS0 FtObstObst
S. L. 860 1465 25 157	5 995 1690 1070 1810 1150	¹⁹⁴⁵ Impact of DA	S. L. 610 1055 655	130 705 1205 760 1290 815 1380
	0 1090 1850 1170 1990 1260 2		2000 725 1250 785	1230 770 1315 830 1410 890 1505 1340 845 1435 905 1540 975 1650
3000 1125 1925 1215 208	0 1310 2240 1410 2420 1515	$\frac{2335}{2605}$ (PA and Tam)	3000 795 1365 860	1465 925 1570 995 1685 1065 1805
4000 1235 2120 1335 229	5 1440 2480 1550 2685 1660 2		4000 870 1490 940 5000 955 1635 1030	1605 1010 1725 1090 1855 1165 1975 1765 1110 1900 1195 2035 1275 2175
6000 1355 2345 1465 254 6000 1495 2605 1615 283	5 1585 2755 1705 2975 1825 3 0 1745 3075 1875 3320 2010 3	3205	6000 1050 1800 1130	1940 1220 2090 1310 2240 1400 2395
7000 1645 2910 1785 317 8000 1820 3265 1970 357	0 1920 3440 2065 3730 2215 4 5 2120 3880 2280 4225 2450 4	4045 4615	7000 1150 1985 1245 8000 1270 2195 1370	2145 1340 2305 1435 2475 1540 2650 2375 1475 2555 1580 2745 1695 2950
NOTES: 1. Short field technique as speci 2. Prior to takeoff from fields be leaned to give maximum F 3. Decrease distances 10% for tail winds up to 10 knots, incre-	fied in Section 4. above 3000 feet elevation, the mixture IPM in a full throttle, static runup. or each 9 knots headwind. For operatio ease distances by 10% for each 2 knots.	should in with But wait, there's	NOTES: 1. Short field technique as a 2. Prior to takeoff from field be leaned to give maxim 3. Decrease distances 10 tail winds up to 10 knots, 4. For operation on dry	specified in Section 4. elds above 3000 feet elevation, the mixture should rum RPM in a full throttle, static runup. % for each 9 knots headwind. For operation with a, increase distances by 10% for each 2 knots.

For operation on dry, grass runway, increase distances by 15% of the "ground roll" figure.

"ground roll" figure.

Take Off and Landing Data

- Brief each takeoff, approach, and landing
- Take off and landing data (TOLD Card):

My Short Field	Takeoff and	Landing	Performance
----------------	-------------	---------	-------------

Date	Pilo	t	Instructor	
Airport	Elev	vation	Temperature	
Density Altitude	Wir	nd Dir./ Speed	X-Wind	
Runway	Run	nway Length	Runway Composition	
Aircraft	Gro	ss Weight	Test Weight	
Takeoff Flap Setting	Rot	ation Speed X.07	Rotation Speed	
Vx/Vx	Tak	eoff Distance	50 Ft. Obstacle Dist.	
Landing Flap Setting	App	proach Speed	Landing Distance	

Airplane Type:	Tail Number:	Date:
----------------	--------------	-------

ATIS/WX Data:	Value:	Comments:
Date:		
Time:		
Airport:		
Info ID:		
Mag. Wind:		Headwind comp = WV* <u>Cos(</u> α)
Viz:		
Sky:		
Temp:		
Dew point:		
Altimeter:		
Expected runway:		
Runway length:		
Remarks:		
Calculated Data:	Value:	Comments:
Pressure Altitude.		
Density Altitude:		See DA table.
Take-off distances:		See PoH page:
		Take-off conditions:
 Ground roll: 		
b. To clear 50ft:		
c. TO speed IAS (VR):		
d. V _X speed IAS (V _X):		
e. TO speed @ 50ft:		
f. Accel. stop distance:		
(2.5 x TO roll):		
Climb rate:		See PoH page:
a. Rate of Climb (FPM):		
b. Climb IAS (Vy):		
Landing distances:		Conditions: See PoH page:
a. Ground roll:		
b. To clear 50ft:		
c. Landing speed @ 50ft:		
Hydroplane speed:	50	At 30PSI.
CODT/DCI\#0	40	At 20PSI

Note: Note: Take care with sign (+/-) of wind and field condition fiddle factors.

Pilots need to understand and act on...

Takeoff and departure calculations

Rejected takeoff decision point

- 50/70 rule (be at 70% $V_{\rm r}$ by 50% distance)
 - 54 kts or mph rotation speed
 - $-60 \times 70\% = 42$
 - 1,420 ft. available
 - 1,420' x 50% = 710'

- Terrain and obstructions
 - Can you climb out without hitting anything?

Forced landing opportunities

- First time taking off from that field?
- Where will you go?

Know your runway markings and distances

•https://www.faa.gov/documentLibrary/media/Advisory_Circular/150-5340-1M-Chg-1-Airport-Markings.pdf

Where is, say, 710 feet?

Threshold to first stripe = 310'

Each stripe = 120'

Each gap = 80'

Start of third stripe = 710'

Or...be reasonable...it's between the 500' and 1000' markers!

Recommendations:

- Brief each takeoff, approach, and landing
 - Helps reduce impact of startle-get "it" in your head
 - Performance expectations vs data
 - Runway and available distance for takeoff or landing
 - Make every landing a precision landing
 - Aircraft configuration and target airspeeds
 - Rejected takeoff or landing decision point
 - Departure/approach path
 - Obstacles and terrain
 - Return to airport altitude
 - Forced landing prospects _

Conundrum

Pilots need to know

- Terrain and obstructions
- Forced landing challenges and opportunities
 - Consider this on the *approach* (to unknown airport)
 - Fly over, check wind, check for offfield landing spots
- Even if VFR, know the ODPs...

Take off and obstacle procedures are in the TPP

- TPP: Terminal Procedures Publication
- Online
 - Search for Digital TPP
 - <u>https://www.faa.gov/air_traffic/flight_info/aeronav/digital_products/dtpp/</u>
- PDF and paper version available
- A sort of Chart Supplement for instrument pilots
- Approach plates, approach and departure procedures...and more...

U.S. Terminal Procedures Publication Northwest (NW) Vol 1 of 1 Effective: 0901Z 30 NOV 2023 to: 0901Z 25 JAN 2024 Costal the Charles Notice (CN) effective: 28 DEC 2023 for revised Instrument Procedure Charls for this volume

Consult NOTAMs for latest information Consult/Subscribe to FAA Safety Alerts and Charting Notices at: http://www.faa.gov/air_trafficifight_info/seronavisafety_alerts/ Published from digital files compiled in accordance with Interagency Air Committee specifications and agreements approved by Department of Defense - Federal Aviation Administration

Departure Procedures

- Even if VFR, know the (IFR) take off minimums
- Here, runway 12 requires a minimum climb of 410' per NM to 800'
- Feet per NM?
 - Yes this is climb gradient (not rate)
- We use this for instrument departures as we don't want to hit things
- **FPM = FPNM * GS/60**
- At 90 knots, requires 615 FPM
- Can Gigi do it this, today?
- How do you know?

TAKEOFF MINIMUMS, (OBSTACLE) DEPARTURE PROCEDURES, AND DIVERSE VECTOR AREA (RADAR VECTORS) FREDERICK, MD FREDERICK MUNI (FDK) TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES

L14

AMD14A 30JAN20 (20030) (FAA) TAKEOFF MINIMUMS: Rwy 5, 300-2 or std. w/min. climb of 260' per NM to 600 Rwy 12, 500-2% or std. w/min. climb of 410' per NM to 800 DEPARTURE PROCEDURE Rwy 5, climbing left turn heading 340° and on FDK VOR R-010 to 2100 before proceeding on course. Rwy 12, climb heading 124° to 900 before proceeding westbound. Rwy 23, climb heading 229° to 1200 before turning right. Rwy 30, climbing right turn heading 040° and on FDK R-010 to 2400 before proceeding on course. VCOA: Rwy 30, obtain ATC approval for climb in visual conditions when requesting IFR clearance. Climb in visual conditions to cross Frederick Muni airport at or above 1700 before proceeding on course. TAKEOFF OBSTACLE NOTES: Rwy 5, light and sign beginning 44' from DER, 123' left of centerline, up to 3' AGL/286' MSL. Trees beginning 1467' from DER, 630' right of centerline, up to 90' AGL/389' MSL. Trees beginning 2645' from DER, 610' left of centerline, up to 75' AGL/394' MSL. Trees beginning 4525' from DER, 597' left of centerline, up to 75' AGL/434' MSL. Elevator and trees beginning 4824' from DER, 341' right of centerline, up to 76' AGL/435' MSL. Trees 1.2 NM from DER, 1562' right of centerline, up to 95' AGL/514' MSL Trees 1.4 NM from DER, 936' right of centerline, up to 89' AGL/508' MSL. Rwy 12, wall and trees beginning 45' from DER, 283' right of centerline, up to 14' AGL/308' MSL. Trees beginning 1312' from DER, 228' left of centerline, up to 82' AGL/391' MSL Trees beginning 1667' from DER, 75' right of centerline, up to 83' AGL/362' MSL Building and trees beginning 3292' from DER, 45' left of centerline, up to 113' AGL/552' MSL. Tower, pole, grain silos, and trees beginning 3365' from DER, 41' from DER, up to 101' AGL/520' MSL. Trees 2.1 NM from DER, 1377' left of centerline, up to 90' AGL/779' MSL. Trees 2.3 NM from DER, 2711' left of centerline, up to 107' AGL/636' MSL Rwy 23, vehicles on road and trees beginning 134' from DER, 376' right of centerline, up to 21' AGL/327' MSL. Pole, buildings, and trees beginning 737' from DER, 286' right of centerline, up to 47' AGL/362' MSL Poles and trees beginning 1477' from DER, 41' left of centerline, up to 72' AGL/411' MSL Trees beginning 1701' from DER, 55' right of centerline, up to 78' AGL/397' MSL Rwy 30, poles and trees beginning 4' from DER, 320' right of centerline, up to 22' AGL/316' MSL. Antenna on building and trees beginning 1255' from DER, 750' left of centerline, up to 56' AGL/335' MSL Trees beginning 1096' from DER, 351' right of centerline, up to 77' AGL/336' MSL. Trees 1962' from DER, 105' right of centerline, up to 77' AGL/356' MSL

Departure Procedures

Departure Procedures

- Even if VFR, know the departure procedures and requirements
- Here, runway 12:
 - Climb heading 124° to 900' before proceeding westbound
 - Lots of notes to help you avoid hitting things...
- So...we need to know takeoff performance AND climb performance

30

Climb Performance – DA and Weight

PA-28-180

PIPER CHEROKEE

CESSNA MODEL 172S SECTION 5 PERFORMANCE

MAXIMUM RATE-OF-CLIMB AT 2550 POUNDS

CONDITIONS:

Flaps Up Full Throttle

PRESS	CLIMB	F	RATE OF CLIMB - FPM				
FT	KIAS	-20°C	0°C	20°C	40°C		
S.L.	74	855	785	710	645		
2000	73	760	695	625	560		
4000	73	685	620	555	495		
6000	73	575	515	450	390		
8000	72	465	405	345	285		
10,000	72	360	300	240	180		
12,000	72	255	195	135			

NOTE:

1. Mixture leaned above 3,000 feet for maximum RPM

Notes:

- V_Y reduces with DA
- Rate of climb changes
 are significant

Federal Aviation Administration

Figure 5-6. Maximum Rate of Climb

Climb Performance - Leaning

CESSNA MODEL 172S

SECTION 5 PERFORMANCE

MAXIMUM RATE-OF-CLIMB AT 2550 POUNDS

CONDITIONS:

Flaps Up Full Throttle

PRESS	CLIMB	F	ATE OF C	LIMB - FPN	N
ALT FT	SPEED KIAS	-20°C	0°C	20°C	40°C
S.L.	74	855	785	710	645
2000	73	760	695	625	560
4000	73	685	620	555	495
6000	73	575	515	450	390
8000	72	465	405	345	285
10,000	72	360	300	240	180
12,000	72	255	195	135	

Note the note! Lean above 3,000' (DA)

Some planes have a climb leaning table

RATE OF CLIMB

CONDITIONS: Flaps Up	M	XTURE SE	ETTI
Gear Up 2700 BPM	PR	ESS ALT	GF
Full Throttle Mixture Set at Placard Fuel Flow Cowl Flaps Open		S. L. 4000 8000	1 1 1 1 1

WEIGHT	PRESS	CLIMB		RATE OF C	LIMB - FPM	
LBS	FT	KIAS	-20 ⁰ C	0°C	20 ⁰ C	40 ⁰ C
2800	.S.L. 2000 4000 6000 8000 10,000 12,000	82 81 80 79 79 78	1080 960 840 725 610 495 385	990 875 760 645 530 420 315	905 790 675 565 455 350 245	815 705 595 485 380

NOTE:

Mixture leaned above 3,000 feet for maximum RPM.

Weight, DA, Transition Training, Configuration

National Transportation Safety Board Aviation Accident Final Report

Location:	Waterford, Michigan	Accident Number:	CEN13FA364
Date & Time:	June 21, 2013, 13:40 Local	Registration:	N9926Q
Aircraft:	Cessna 172M	Aircraft Damage:	Destroyed
Defining Event:	Loss of control in flight	Injuries:	4 Fatal
Flight Conducted Under:	Part 91: General aviation - Personal		

Analysis

Air traffic control tower personnel saw the airplane lift off the runway and attain an altitude of about 100 feet. A pilot approaching the runway for landing saw the airplane lift off and noticed it was not climbing. He saw the airplane "lagging" and "wallowing in the air with flaps extended." Shortly after, the accident pilot advised an air traffic controller that he was "a little overweight" and would need to return to the airport and land. The air traffic controller cleared the airplane to land on the parallel runway or the grass area surrounding the runways. The pilot did not respond. Several witnesses near the airport, including the pilot in the landing airplane, saw the accident airplane impact the ground and burst into flames. A postaccident examination revealed that the wing flaps were fully extended (40 degrees). Weight and balance calculations indicated the airplane was slightly under maximum gross weight. Postaccident examinations revealed no evidence of preimpact mechanical malfunctions or failures that would have precluded normal operation.

https://www.youtube.com/watch?v=eYqS-j3pUHY

Field at 981', 28C, 30.17" DA = 2,500'

Estimated gross weight 2,298.5 pounds Maximum allowable gross weight 2,300 pounds

Time, Fuel and Distance to Climb

TIME, FUEL, AND DISTANCE TO CLIMB

MAXIMUM RATE OF CLIMB

- 1. Add 1.5 gallons of fuel for engine start, taxi and takeoff allowance.
- 2. Increase time, fuel and distance by 10% for each 10°C above standard temperature.
- 3. Distances shown are based on zero wind.

WEIGHT	PRESSURE	TEMP	CLIMB	RATE OF	F	ROM SEA LE	VEL
LBS	ALTITUDE FT	°C	SPEED KIAS	CLIMB FPM	TIME MIN	FUEL USED GALLONS	DISTANCE NM
2800	S.L.	15	82	925	0	0	0
	1000	13	82	875	1	0.3	2
	2000	11	81	830	2	0.6	3
	3000	9	81	780	4	1.0	5
	4000	7	81	730	5	1.3	7
	5000	5	80	685	6	1.6	9
	6000	3	80	635	8	2.0	11
	7000	1	80	585	10	2.4	14
	8000	-1	79	535	11	2.8	17
	9000	-3	79	490	13	3.2	20
	10,000	- 5	79	440	16	3.6	23
	11,000	-7	78	390	18	4.1	27
	12,000	- 9	78	345	21	4.6	31

- Read the notes!
- To determine values when climbing from say 3,000' to say 8,000'
 - Get the 8,000' values
 - Subtract the 3,000' values

Example

 Climbing from an airport at 3,000' to 8,000' in standard conditions:

(2.8 - 1.0) + 1.5 = 3.3 gallons

- 11-4 = 7 minutes
- 17-5 = 12NM
- RoC ~ 650 FPM
- IAS ~ 80 knots

Koch Chart

Example:

- For example, the diagonal line shows that 230 percent must be added to take off distance with temperature of 102F and a pressure altitude of 6,000 feet.
- Therefore, if your standard temperature sea level takeoff distance normally requires 1,000 feet of runway to climb to 50 feet, it would become 3,300 feet under the conditions shown in the chart.
- In addition, the rate of climb would be decreased by 76 percent. So, if normal sea level rate of climb is 500 FPM, it would become 120 FPM.

Forced landing tips & tricks

- Know how far you can glide
- Think "per 1,000' AGL"

~ 2.0 NM per 1,000' AGL

Know Before You Need—Information Sheet

- V speeds
- Quick checklists
- How far you can glide?

V-Speeds and Other [Details		Cessna A152	2					
Cessna A152			Fuel: 26-Gal Oil: 6-Qrts N	ls total //ax, 5-0	; 24.5 usable Qrts Min				
A152			Max Weight	: 1670 I	bs	Pattern Speeds:			
V-Speed	IAS (Kts)		Emergency S	Speeds	IAS (Kts)	Stall Speed (Kts)	Flaps = V _{so} 35	Clean = V ₈₁ 40	Actual Approach
V _A @ 1670lbs	108		Pwr-Off Ldg -	no flan	65	Downwind	80	80	80
V _A @ 1500lbs	102		.wr-Off Ldg -	30 flap	60	Mid-Field Downwind (*1.5)	53	60	70
V _A @ 1350lbs	97		Max. Glide		60	Turning Base (*1.4)	49	56	65
V _{FE}	85		Glide Ratio:		9.7	Final (*1.3) = (V _{REF})	46	52	55-60
V _{NE}	172		AGL (feet)		Miles	over Numbers (*1.2)	42	48	55-60
V _{Lo} Gear up	NA		2000		3.7				
V _{NO}	125		4000		7.3				
V _R	50		5000		9.2	Landing Check -1:		Pattern:	
Vs	4.		6000		11.0	Fuel Gauges - CHECK		Take-Off:	
V _{so}	35		8000		14.7	• Fuel - ON		• Rotate @ 5	0
V _x Flaps Up	55		10000		18.4	Thottle - AS NEEDED		Climb out (a 67
V _x Flap s+10	54					Light - LANDING ON		* Level @ 80	- Kts - 2100 RPN
V _y Flaps Up	67					 Magnetos - BOTH 		 Downwind 	TPA @ 80
						Masters - ON		Downwind	Checklist
						 Mixture - RICH 			
Normal Operations:			ASI Details:			 Carb Heat - HOT 		Abeam Nun	nbers:
What:	IAS (Kts)		ARC		Kts	 Engine Gauges - GREEN 		• Power 150	RPM - 70Kts
Max Crosswind Comp	12					 Flaps - AS REQUIRED 		 Flaps 10 	
Normal climb out	65-75		White Arc:		35 - 85	CLEARANCE/CTAF		• Base @ 65	-70
Short Field TO				Vso	35			 Flaps 20 	
Flaps 10 Retract @ 100'	54			V _{FE}	85			• Final @ 60	-65
Climb - Flaps up:			Green Arc:		40 - 125	 		 Flaps 30 (if 	needed)
Best V _x @MSL	55			V _{S1}	40	 Landing Check - 2:		 BF-GUMPS 	
Best V _x @10,000'	55			V _{NO}	125	BF-GUMPS		 X-Wind Cor 	ntrol + Slip
Best V _Y @MSL	67		Yellow Arc:		125-172	B: Boost Pump ON		 Touch dow 	n @ 42
Best V _Y @10,000'	61			V _{NO}	125	F: Flaps & Feet			
Approach to land:				V _{NE}	172	G: Gas - ON		Go Around	
Normal - Flaps 0	65-70					U: Undercarriage - down		Full Power	Heat COLD
Normal - Flaps 10	65-70					M: Mags, Masters, Mixture		 Pitch down 	for 55 Kts
Normal - Flaps 20	65-70			_		P: Prop full high		 Flaps back 	ONE notch
Normal - Flaps 30	55-65					5: Secure - beits, doors, etc		Pitch for 67 Elans rotes	Kts t in incroment
Short Field - Fidps SU	54	-						riaps retra	con increment

Know Before You Need—TAS at Various DAs

- Use this chart to determine TAS based on DA
- Impact on TO and landing distance
- Impact on (ground speed) and illusions
- Example:
 - CAS of 70 Kts
 - DA of 5,000'
 - TAS is 77 kts
 - Use wind HW comp to determine GS

TAS From CAS At Various Density Altitudes

TAS from CAS at Various Density Altitudes (TAS = CAS*(1+0.2*DA/1000)												
CAS	40	50	60	70	80	90	100	110	120	130	140	150
DA (Feet)												
-5000	36	45	54	63	72	81	90	99	108	117	126	135
-4000	37	46	56	65	74	83	92	102	111	120	129	138
-3000	38	47	57	66	76	85	94	104	113	123	132	141
-2000	39	48	58	68	77	87	96	106	116	125	135	144
-1000	40	49	59	69	79	89	98	108	118	128	138	147
0	40	50	60	70	80	90	100	110	120	130	140	150
1000	41	51	62	72	82	92	102	113	123	133	143	153
2000	42	52	63	73	84	94	104	115	125	136	146	156
3000	43	53	64	75	85	96	106	117	128	138	149	159
4000	44	54	65	à	87	98	108	119	130	141	152	162
5000	44	55	66	77	38	99	110	121	132	143	154	165
6000	45	56	68	70	90	101	112	124	135	146	157	168
7000	46	57	69	80	92	103	114	126	137	149	160	171
8000	47	58	70	82	93	105	116	128	140	151	163	174
9000	48	59	71	83	95	107	118	130	142	154	166	177
10000	48	60	72	84	96	108	120	132	144	156	168	180
11000	49	61	74	86	98	110	122	135	147	159	171	183
12000	50	62	75	87	100	112	124	137	149	162	174	186
TAS = CAS												
(With DA												

Forced landing tips & tricks

- Frequent practice
 - At typical mission weights
- Flaps up approach to between 1st and 2nd third of runway of landing area

Pilots need to know

- Return to airport decision criteria
 - Loss of control in this situation are usually fatal
 - No-go/Go what's your number (altitude)?
 - Determine with a CFI, at altitude
 - In each airplane you fly
 - At operational weight
 - Consider startle response
 - 3-second delay
 - PUSH!!
 - Brief return to airport criteria for every takeoff
 - Return to airport should be last resort?

Takeoff and climb

- Aircraft configuration
 - Per POH for takeoff type

Power setting

- Takeoff, climb, cruise climb
- Power setting & fuel consumption
- Altitude, wind, & ground speed
- En route fuel availability
- Lean as per POH

Recommendations:

- Brief each takeoff, approach, and landing
 - Runway and available distance for takeoff or landing
 - Aircraft configuration and target airspeeds
 - Rejected takeoff or landing decision point
 - Departure/approach path
 - Return to airport altitude
 - Forced landing opportunities

Develop & adjust with your CFI

- CFIs provide:
 - Perspective
 - Consistency
 - Coaching
 - Experience

- Non-judgmental (Choose your CFI wisely)
 - Read "Death by Time Builder" for an illustration of bad behaviors
- Regular Reassessment
 - Required for professionals, including CFIs
 - Highly "recommended" for all pilots

Calibrate your airplane

- Book number are...(ideal) book numbers
- Actual aircraft is older and probably very different from when it left the factory
- Okay...W&B should be up to date, but...
- Is it more or less draggy?
- Is the engine getting a bit tired (are you...?)
- So, what is the actual capability of your aircraft?
- How does it compare to book numbers?

Calibrate your airplane: Collect data

- Prior to every take off, make a note of PA, temperature and hence DA. Use the TOLD card to capture this
 - Estimate ground roll distance...count stripes
 - Maintain a table of ground roll at different DAs
 - Compare with book numbers determine the multiplier

Calibrate climb performance at different DAs

- Can emulate different DA conditions by flying at different altitudes and noting PA and outside temperature
- Create a table of climb performance at different DAs
- Compare with book numbers determine the multiplier
 - Hint: It is never going to be better, but will very likely be way worse

Proficiency and Peace of Mind

- Regularly review WINGS courses and activities
- Fly regularly with your CFI—WINGS activities
 - Do different things to become familiar
 - Do familiar things differently
- "Revert to training"...only works if...?
 - a) You've seen it before
 - b) You've done it recently
 - c) Insist on scenario training during your flight review and/or *WINGS* flights. Dig into options, understand predispositions (biases)
- Practice, practice...
 - Get in your head
 - ...and keep it there...for when you need it

Learning Points

- General aviation accidents continue to be associated with inaccurate or unreasonable expectations about aircraft performance
- Determination and use of aircraft performance information is essential for every flight and in all flight regimes
- Running the numbers isn't that difficult and a "take-off and landing card" should be part of every pre-flight action plan
- Go out and calibrate your actual aircraft

Homework-1: Review and learn from...

https://www.youtube.com/watch?v=eYqS-j3pUHY

ACCIDENT CASE STUDY: HIGH ASPIRATIONS

https://www.youtube.com/watch?v=sTo4GGRExGE

https://www.aopa.org/training-and-safety/online-learning/accident-case-studies/into-thin-air

Homework-2: Dust off the POH...

Read section 5 – Performance

- Print out TO and landing tables and keep on your kneeboard
- Read section 6 Weight and Balance
 - Run a few examples by hand to remember what it is all about
 - Check that the EFB W&B section is up to date for YOUR airplane!
 - Foreflight Workshops

TABLE OF CONTENTS

Page

CESSNA MODEL A152

Page

SECTION 5 Performance

TABLE OF CONTENTS

Introduction								. 5-3
Use of Performance Charts								. 5-3
Sample Problem								. 5-3
Takeoff								. 5-4
Cruise						۰.		. 5-5
Fuel Required								. 5-5
Landing								. 5-7
Demonstrated Operating Temperature								. 5-7
Figure 5-1, Airspeed Calibration								. 5-8
Figure 5-2, Temperature Conversion Chart								. 5-9
Figure 5-3, Stall Speeds								5 - 10
Figure 5-4, Takeoff Distance								5 - 11
Figure 5-5, Maximum Rate Of Climb								5-12
Figure 5-6, Time, Fuel, And Distance To Climb								5-13
Figure 5-7, Cruise Performance		÷	÷	÷	÷.			5-14
Figure 5-8, Range Profile - 24.5 Gallons Fuel								5-15
Range Profile - 37.5 Gallons Fuel		÷	÷	÷	÷			5-16
Figure 5-9, Endurance Profile - 24.5 Gallons Fuel					÷			5-17
Endurance Profile - 37.5 Gallons Fuel			÷		÷			5-18
Figure 5-10, Landing Distance	Ĩ.		Ĩ.	ĺ.	Ĵ.	÷.	÷	5-19
- Garoo roj hanang bibianco i i i i i i i i i				•				0 10

Homework-3: Performance Specific Resources

Spend some quality time with these resources:

PHAK Chapter 10: Weight and Balance

PHAK Chapter 11: Performance

https://www.aopa.org/training-and-safety/online-learning/reality-check/takeoff-and-landing-performance

Density Altitude

Techniques: Density Altitude

Density Altitude Flying

Density Altitude

<u>Tips & Techniques: Density Altitude -</u> <u>Safety considerations</u>

Density Altitude—The Triple H Effect

FAA Density Altitude

The EXTREMELY helpful guide to Density Altitude

Homework-4: Resources - General

- Spend some quality time with these resources:
- https://www.aopa.org/training-and-safety/air-safety-institute
- <u>Safety to Go</u>
- <u>faasafety.gov</u>
- <u>Pilot Minute</u>
- 57 Seconds To Safer Flying
- FAA Safety Briefing Magazine
- From the Flight Deck
- <u>https://www.youtube.com/playlist?list=PL5vHkqHi51DSNpsBC8nb8Q8gFcGVmWhGA</u>
- <u>https://www.youtube.com/watch?v=303Pd_2UAmU</u>

Subscribe to Aviation Safety

https://www.aviationsafetymagazine.com

Homework-5: Make a data sheet for your aircraft

V-Speeds and Other	Details		Cessna C182	T: N52	8MJ	1						
Cessna C182T: N528MJ			Fuel: 92-Gal Oil: 8-Qrts N	ls total; 1ax, 6-0	; 87 usable Qrts Min							
Fuel Injected			Max TO Wei	ght: 31	00 Ibs		Pattern Speeds:					
V-Speed	IAS (Kts)		Emergency S	peeds	IAS (Kts)		Stall Speed (Kts)	Flaps = V ₈₀ 41	Clean = V ₈₁ 51	Actual Approach		
V _A @ 3100lbs	110		Pwr-Off Ldg - no flap		Pwr-Off Ldg - no flap		70		Downwind	80	80	80
V _A @ 2600lbs	100		Pwr-Off Ldg - 3	30 flap	65		Mid-Field Downwind (*1.5)	62	77	70		
VA @ 2100lbs	91		Max. Glide		70		Turning Base (*1.4)	58	72	70		
V _{FE}	136/117/99		Glide Ratio:		8.7		Final (*1.3) = (V _{REF})	54 67		65 - 70		
V _{NE}	175		AGL (feet)		Miles		Over Numbers (*1.2)	50	62	65		
V _{Lo} Gear up	NA		2000		3.3							
V _{NO}	140		4000		6.6							
V _B	55		5000		8.2		Landing Check -1:		Pattern:			
Vs	51		6000		9.9		Fuel Gauges - CHECK		Take-Off:			
Vsn	41		8000		13.2		• Fuel - ON		Rotate @ 55			
V _x Flaps Up	62		10000		16.5		Thottle - AS NEEDED	Climb out @		ο V _{Y = 82}		
~ • •							Lights- LANDING ON		• Level @ 80	Kts - 2100 RPM		
V _y Flaps Up	82						 Magnetos - BOTH 		Downwind	TPA @ 80		
							Masters - ON		 Downwind 	Checklist		
							 Mixture - RICH 					
Normal Operations:			ASI Details:						Abeam Nun	nbers:		
What:	IAS (Kts)		ARC		Kts		 Engine Gauges - GREEN 		* Power 1500	RPM - 70Kts		
Max Crosswind Comp	15						Flaps - AS REQUIRED		• White Arc -	Flaps 10		
Normal climb out	70-80		White Arc:		41 - 100		CLEARANCE/CTAF		• Base @ 70			
Short Field TO				Vso	41				 Flaps 20 			
Flaps 20 Retract @ 100'	60			V _{FE}	100				* Final @ 65			
Climb - Flaps up:			Green Arc:		51 - 140				 Flaps 30 (if 	needed)		
Best V _x @MSL	62			V _{S1}	51		Landing Check - 2:		* BFC-GUMPS			
Best V _x @10,000'	68			VNO	140		BFC-GUMPS		 X-Wind Cor 	ntrol + Slip		
Best V _Y @MSL	82		Yellow Arc:		140 - 175		B: Boost Pump - ON	Boost Pump - ON		n @ 41		
Best V _Y @10,000'	77			V _{NO}	140		F: Feet and Flaps					
Approach to land:			Red Line	V _{NE}	175		C: Cowl Flaps - Closed		Go Around			
Normal - Flaps 0	70-80						G: Gas - ON		* Full Power			
Normal - Flaps 10							U: Undercarriage - down		 Pitch down 	for 55 Kts		
Normal - Flaps 20							M: Mags, Masters, Mixture		 Flaps back 	ONE notch		
Normal - Flaps 30	60-70						P: Prop full high		 Pitch for 62 	then 82Kts		
Short Field - Flaps 30	60						S: Secure - belts, doors, etc		 Flaps retrac 	ct in increments		

Homework-6: SLAP

After every flight, SLAP yourself and create actions for the next flight:

- S: How were my Skills today?
- L: What did I Learn today?
- A: How was my ADM today?
- P: How was my *P*lanning today?

Homework-7: Determining DA

Slides at end of this presentation on ways to determine DA

Next Month...

The National FAA Safety Team Presents

Federal Aviation Administration

Topic of the Month – January 2024 Human Performance and Safety Culture

Presented to:	Safety Minded Aviators, Everywhere
By:	Stephen Bateman, CFI, AOPA Flying Clubs
Date:	Tuesday 16th January 2024

Produced by: The National FAA Safety Team (FAASTeam) The Australian Civil Aviation Safety Authority (CASA)

Preparations: (Overdue from previous months)

- Ask a loved once if you should invest the time in this course...
- New Human Factors Course—Ten Modules
 - Videos, quizzes, workbooks, tests.
- Log into <u>faasafety.gov</u>:
- Go to activities-> courses-> all available courses
 - Search for human factors
 - Then scroll to find these ALC codes:
 - 730, 731, 732, 825, 826, 827, 828, 829, 830
 - Here is a handy QR code to get you to 730 (modules 1 and 2):

Safety behaviours: human factors for pilots 2nd edition Resource booklet 1 Introduction

So...

- No recording...but even
 better...
 - <u>https://youcanfly.aopa.org/flying-</u> <u>clubs/flying-club-newsletter</u>
- You can download the presentation!
 - This and earlier ToM presentations are available...
 - Sign-up now!
 - November edition 11/19/2023

★ Flying Clubs → Club Connector Newsletter

FLYING CLUB CONNECTOR NEWSLETTER

Your source for the latest news on flying clubs all over the country. AOPA's research has shown us that flying club leaders are hungry to learn more about the practical experiences of other clubs. So, we have created this

SUBSCRIBE ARTICLES BY TOPIC

Thank you for attending!

You are vital members of our GA safety community!

Bonus: Determining Density Altitude

Determining DA

- DA = PA corrected for non-standard temperature
- So, first find PA!

Determining PA - 1

- Find PA (altitude relative to pressure datum of 29.92")
 - Set "the knob" to 29.92"
 - PA = attitude reading
 - PA = 920' here

Determining PA - 2

- DA = PA corrected for non-standard temperature
- Use the approximate pressure lapse rate of 1,000' per inch of Hg
- Say recorded altimeter setting is 30.1"
 - This is the pressure at sea level at that place and time
- You are flying at 5,000' MSL
- PA = 5,000 + (29.92 30.1) * 1000 = 4,820'

Federal Aviation Administration

64

Either way...

- Some performance graphs require DA
- Some tables need PA and Temp
- Either way, we need to know DA for other things like TAS to CAS conversions
- So...we need to know how to determine DA!

SECTION 5

CESSNA

Determining DA-1

- E6B (or another calculator)
- Get PA by setting 29.92" in the altimeter window (set it back after!)
- Get outside temperature = Temp
- Set PA and Temp on the small right-hand scale. Watch the pos(+) and neg(-) directions!
- Read DA

Determining DA-2a

- Use the PA-Temp chart
- Get PA
 - Set "the knob" to 29.92" and read-off PA
 - Don't forget to set it back to QNH
- Knowing PA and Temp, find DA

Determining DA-2b

- Use the PA-Temp chart
- Get PA
 - Use QNH (altimeter setting)
 - Determine the PA fiddle factor from the table
 - Add the fiddle factor to elevation or altitude
- Knowing PA and Temp, find DA

Example

- At FDK, elevation = 320'
- If QNH = 29.00"; fiddle factor is +893
- PA = 320 + 893 = 1,313'
- If T = 32°C
- DA = Approx. 3,600'

Determining DA-3

- Listen to the AWOS...!
- Use an online calculator
- Use your fav EFB
- Airport elevation = 13'
- Temp = 21C: DP = 19C
- Alt = 29.91"
- DA = 1,028'

DA Poster from AOPA

https://www.aopa.org/training-and-safety/air-safetyinstitute/safety-publications/density-altitude

Density Altitude: Beware Of Thin Air

High altitude, high temperature, and high humidity create less dense or thinner air that contribute to high density altitude and impact aircraft and engine performance. Modify and use the AOPA Air Safety Institute's Density Altitude Poster to quickly know the density altitude values at your airport on a standard day.

READ THE ARTICLE AND GET THE POSTER

